Vertex percolation on expander graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Percolation on Expander Graphs

We say that a graph G = (V,E) on n vertices is a β-expander for some constant β > 0 if every U ⊆ V of cardinality |U | ≤ n 2 satisfies |NG(U)| ≥ β|U | where NG(U) denotes the neighborhood of U . We explore the process of uniformly at random deleting vertices of a β-expander with probability n for some constant α > 0. Our main result implies that as n tends to infinity, the deletion process perf...

متن کامل

On Percolation in Random Graphs with given Vertex Degrees

We study the random graph obtained by random deletion of vertices or edges from a random graph with given vertex degrees. A simple trick of exploding vertices instead of deleting them, enables us to derive results from known results for random graphs with given vertex degrees. This is used to study existence of giant component and existence of k-core. As a variation of the latter, we study also...

متن کامل

Constructing vertex decomposable graphs

‎Recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎In this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎Then we use this construction to generalize the result due to Cook and Nagel‎.

متن کامل

Expander Graphs

This paper will introduce expander graphs. Kolmogorov and Barzdin’s proof on the three dimensional realization of networks will be discussed as one of the first examples of expander graphs. The last section will discuss error correcting code as an application of expander graphs to computer science.

متن کامل

Expander Graphs

Let AG be the adjacency matrix of G. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of AG. Sometimes we will also be interested in the Laplacian matrix of G. This is defined to be LG = D−AG, where D is the diagonal matrix where Dvv equals the degree of the vertex v. For d-regular graphs, LG = dI −AG, and hence the eigenvalues of LG are d− λ1, d− λ2, . . . , d− λn. Lemma 1. • λ1 = d. • λ2 = λ3 = . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2009

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2008.07.001